

Tetrahedron Vol. SO, No. I, pp. 1927-1934. 1994 Copyright 8 1994 Elsevier Scimce Ltd Printed in Great Britain. All rights reserved **0040-4020/94 \$6.00+0.00**

004@4020(93)E0168-F

Synthesis of 2-C4-Nitrophenoxy)quinoxaline and its Reactions with Hydroxide Ion in Micellar Systems

Angela Cuenca,* Cesidio Bruno and **Antonieta** Taddei

Departamento de Qutimica, Universidad Simdn Bolivar Apartado 89000, Caracas 1080-A, Veneauela

ABSTRACT: **The synthesis of 2-(4-nitrophenoxy)quinoxaline (3) ie described. The reaction of (3) with hydroxide ion was studied in the presence and absence of micellar eyeteme. Cationic micellee** 0r cetyltrimethylammonium chloride and bromide (CTACl and CTABr) and **tetradecyltrimethylaonium chloride and bromide WTACl and MTABr)** apeed the reaction of (3) with hydroxide ion. The second-order rate **constants at the micellar peeudophase are smaller than the secondorder rate constant in water.**

Reaction rates and equilibria in water are affected by micellar systems.¹ Several models are available which quantitatively describe the effects of ionic micelles on reaction rate.²⁻⁷ Most of the kinetic results **are interpreted by using the pseudophase model'-' in which micellee and water are treated as distinct, but uniform reaction media. The paeudophaee** ion-exchange model (PIE)²⁻⁵ provides a quantitative description of aqueous **mioellar errecte on reaction rate8 and ite advantages and limitations have** been discussed previously.^{1,3,8-11} The PIE model involves the assumption that the fractional charge neutralization of the micellar head groups, β , does not change as the surfactant concentration is changed or as reactive reactive counterion, e.g., OH or F is added. This assumption fails when **the only anions in the solution are very hydrophilic, especially at high**

1927

concentration.^{12,13} In these systems the data can be fitted by a mass-action model.¹² which assumes that β increases with increasing $[OH^-]$ (or **[P-l), equation 1:**

$$
D_{\mu} + OH_{\nu} = \frac{K_{OH}^{2}}{\sqrt{H_{H}^{2}}}
$$

 K' = $[OH] / [(OH'_{\text{N}})(ID'_{\text{n}}] - [OH'_{\text{N}})]$ (2)

where K' is the counterion binding ccnetant, D ie the micellized OH surface **a** = [D] - c.m.c., and β = [OH] / [D] . When two ions compete for the micellar head groups, it is possible to define independent equilibria for each of them, so that for OH⁻ as reactive ion and X⁻ as the micelle counterion, the equilibrium constants K'_{cut} and K'_{cut} can be written as equation 3 and $4:$ ^{5,14}

$$
K'_{OH} = [OH_{M}^{-1}/(ID_{n}) - [OH_{M}^{-1} - [X_{M}^{-1}]/([OH_{T}^{-1} - [OH_{M}^{-1}]) \qquad (3)
$$

$$
K_{\mathbf{X}}^{\prime} = \{X_{\mathbf{M}}^{-1}/(D_{\mathbf{M}}^{-1} - [O_{\mathbf{M}}^{-1} - \{X_{\mathbf{M}}^{-1}\})(\{X_{\mathbf{T}}^{-1} - [X_{\mathbf{M}}^{-1}\})
$$
(4)

where the subscript T denotes the total concentration.

The PIE and mase-action-like model8 fit the experimental data equally well in dilute OH⁻. An alternative treatment¹⁵ for interactions of ions **and ionic micellea aasumee that electrostatic interactiona will bring** counterions toward the micellar surface and repel co-ions; ion **distribution around spherical, cylindrical, or ellipsoidal micelles can be estimated by solving the Poisson-Bcltzmann equation which has been ueed successfully to describe the thermodynamic behavior of ionio micellee. ¹⁵⁴⁶**

Nuclecphilic hetercaromatic subetitution reactions on aza-activated substrates have been extensively studied in water and organic solvents.^{17,18} However, the information relative to the effect of colloid **systems upon nuclecphilic aromatic substitution reacticne on quincxaline** derivatives is limited.¹⁹

Quincxaline derivatives are widely used as pharmaceutical and agricultural chemicals. ²⁰They are, in general, comparatively easy to prepare,

and numerous derivatives have been prepared in work designed to produce biologically active materiala.20'2i 2-Chloro-quinoxaline react8 readily with nucleophiles (amines and aryloxides) to give the corresponding 2-sub**stituted quinoxalinea.** ²²

In this report a route for the eyntheaia of the novel heterocyclic compound, 2-(4-nitrophenoxy)quinoxaline (31 (Scheme 1) ie presented and its basic hydrolysis in water and under micellar conditions was investigated.

The effect of added inert salts upon the reaction of (3) with OH⁻ in **the presence and absence of surfactant waa studied. The surfaotants were** cetyltrimethylammonium bromide and chloride $(C_{1,1}, N^{\dagger}Me_{1}, X^{\dagger}; X = Br, Cl;$ **CTABr and CTACl), and tetradecyltrimethylsonium bromide and ohloride** $(C_\text{L,R}^+M\text{e}_X^-, X = Br, Cl; MTABr \text{ and } MTAC1).$

1, X =OH; 2, X=CI; 3,X = p-OzNC6H40

Scheme 1

RESULTS AND DISCUSSION

Synthesis of 2-C4-nitrophenoxy)quinoxaline (3). - The synthesis of 2-(4-nitrophenoxy)quinoxaline (3) is shown in Scheme 1. The displacement of chlo**ride ion with 4-nitrophenoxide ion was carried out when a mixture of 2 chloroquinoxaline (2) and the pre-formed sodium aryloxide were fused together. No cyclised products were obtained a8 by-products.**

Reactions in water. - **In water, 2-(4-nitrophenoxy)quinoxaline reacts with OH- to. produce 2-quinoxalone (4) (Scheme 1). The reaction was followed over a range of [OH-I from 0.003 M to 0.02 M. Repetitive scanning of the reaction mixture showed that no intermediate built up during reaction. The second-order rate constant (k_y) value is 3.98 x 10⁻⁴ M⁻¹ s⁻¹. Added salt** (0.02 M NaBr and NaCl) reduce k_y by approximately 5-7%. Br⁻ is more effec**tive at inhibiting the reaction than Cl-. We could not further increase**

[salt] due to solubility problems.

Reactions in micelles.- Figure 1 shows the pseudo-first order rate constants, k_y , υ s. surfactant concentration profiles for reaction of (3) with 0.02 M OH in the presence of MTAX $(X = C1, Br)$ and CTAX $(X = C1, Br)$. First-order rate constants increase with increasing Isurlactantl and go through maxima, and are lower when the surfactant counterion is Br⁻ rather than Cl^{-} . These results are typical for micellar-assisted bimolecular reactions and are explained by pseudo-phase models that consider distribution of both reactants between water and micelles.¹⁻⁷ The rate maxima move towards lower surfactant concentration with increasing length of the *n*alkyl group of the cationic surfactant.

Fig. 1. Reaction of 2-(4-nitrophenoxylquinoxaline (3) with 0.02 M OH in CTAX (\bullet , \circ), CTAX + 0.02 M NaCl (\bullet) and MTAX (\bullet , \triangle). Solid symbols $X = Cl$, open symbols $X = Br$. (\bigoplus , \bigcirc) Reaction followed in CTACl, by observing the formation of p-nitrophenoxide ion. Lines are calculated.

Figure 1 shows the effect of added 0.02 M NaCl on the reaction of (3) with 0.02 M OH⁻ in CTACl. In diluted electrolyte, added Cl⁻ ion inhibited the reaction of (3) with OH in CTACl by competing with the reactive anion for the micelle.

Quantitative Treatment. - The kinetic analysis follows Scheme 2⁷, where S is the substrate, $K_{\rm g}$, is the substrate binding constant, and $k'_{\rm u}$ and $k''_{\rm u}$ are

first-order rate constants in aqueous and mioellar pseudophase, respeotive-

ly given by $3-5$

$$
\mathbf{k}_{\mathbf{u}}' = \mathbf{k}_{\mathbf{u}} \text{ [OH}_{\mathbf{u}}^{-1} \text{]}
$$
 (5)

$$
k'_{M} = k_{M} [OH_{M}^{-1}/(D_{n}^{T}) = k_{M} m_{OH}^{8}
$$
 (8)

$$
\beta = m_{\chi}^{2} + m_{\text{OH}}^{2} = \text{constant} \tag{7}
$$

In equations 5 and 6 k_s, and k_s, are second-order rate constants, but k_s is **derined in terms of the mole ratio of bound OH- to micellized surfactant.**

The variations of **k** with surfactant concentration were treated quan
 ψ **titatively by means of the PIE model based on equation 8 where competition between OH- and halide ion X- is written as:**

$$
K_{\mathbf{x}}^{\mathbf{O}\mathbf{H}} = \left[\mathbf{O} \mathbf{E}_{\mathbf{W}}^{\top} \mathbf{I} \left(\mathbf{X}_{\mathbf{M}}^{\top} \right) / \left(\mathbf{O} \mathbf{H}_{\mathbf{M}}^{\top} \mathbf{I} \left(\mathbf{X}_{\mathbf{W}}^{\top} \right) \right) \right] \tag{8}
$$

The first-order rate constant, $\begin{bmatrix} k \\ \psi \end{bmatrix}$, is given by equation 9:

$$
k_{\psi} = (k_{\psi} [OR_{\psi}^{-}] + k_{\psi} K_{S} m_{OH}^{S} [D_{n}])/(1 + K_{S} [D_{n}])
$$
 (9)

The parameters in equation 8 and 9 can be estimated by fitting experimental rate constant-surfactant profiles to these equations (Figure 1). The rate constants for reaction in water, k_u, were direcly measured. Table 1 shows **the estimated rate constants in the mioellar pseudophase.**

The parameter values used in calculations were $K_{\text{Cl}}^{\text{OH}} = 4$ and $K_{\text{Br}}^{\text{OH}} =$ Solid lines in Figure 1 represents the values of k_y calculated usin
w **equation 9. The fit of theory and experiment is reasonably goad and fitted** values of k_y are within 5%. The effect of added salt in CTACl fits the **model without introduction of further adjustable parameters. The variation** of k_{ψ} with [surfactant] was predicted for assumed values of β and K_{χ}^{max} **provided that these parameters are constant over a range of surfactant** concentration. The second-order rate constant, k_u, of reactions in the **micellar pseudophase have the dimensions of reciprocal time, because the**

Surfactant	10^4 c.m.c. М	10^4 $k_{\overline{M}}$ s^{-1}	$K_{S_{1}}$	β	$\mathbf{k}^{\mathsf{m}}_{\mathsf{z}}$ 10 ⁴ $\frac{-1}{8}$	$\mathbf{k}_2^m/\mathbf{k}_w$
MTAC1	72	15.3	6500	0.75	2.14	0.54
MTABr	30	12.7	6500	0.75	2.53	0.64
CTAC1	11	18.1	8000	0.8	2.49	0.62
$CTAC1^b$	9.0	17.8	8200	0.8	1.78	0.45
CTABr	8.0	17.0	8000	0.8	2.38	0.60

Table 1. Parameters that Best Fit **the** Kinetic Results for Suetrate (3) in Micelles. a </sup>

 ${}^{\alpha}$ At 25.0 ^oC and 0.02 M NaOH. ${}^{\text{b}}$ With 0.02 M NaCl.

concentration of OH⁻ is written as a mole ratio^{2,12a,14} This choice of **unite allows an unambiguous definition of concentration in the micellar pseudophase, but km cannot then be compared directly with second-order rate** constants in water, k_w, the units of which are generally mol $\bar{ }$ L s $\bar{ }$. We **can compare the second-order rate constants for reaction in the micellar** and aqueous pseudophases (k_y and k_y) by defining the volume element of **reaction in the micelles, which we assumed to be that of the Stern layer,** with a molar volume, $V_{\mathbf{M}}$, of ca. 0.14 L mol².²⁷ Therefore, the secondorder rate constant, k_{\perp}^{m} , is given by $z^{23,24}$

$$
k_{2}^{m} = k_{M} V_{M}
$$
 (10)

For *many* **ion-molecule reactions second-order rate constants at the micellar surface appear to be very similar to those in water.2'2S-27 However, there are some exceptions to this generalization where the rate constants in micellar solutions are larger than the rate constant in** water.²⁸ The k^m/k_k values obtained for the reaction of 2-(4-nitrophenoxy) **quinoxaline with OH- in the presence of the cationic surfactants are shown in Table I. The determined second-order rate constants in the micellar pseudo phase are smaller than the second-order constants in water. Under** the conditions used here, dilute OH⁻, we can ascribe the observed rate en**hancements for the nucleophilic heteroaromatic substitution of (3) with OH**in the presence of cationic micelles, to concentration of reactants at the **colloidal surface.**

EXPERIMENTAL

General Methods. - Melting points are uncorrected. Unless otherwise indicated, all reagents and solvents were purchased from Aldrich or Merck and used without further purification. Silica gel TLC platee (Merck silica gel 60 F_{254} were used to monitor reactions. The surfactants were commercial samples (MTABr and CTABr) recrystallized from EtOH-Et,0 or prepared by quaternization of N-alkyl-N, N-dimethylamine (alkyl = C_{14} \overline{H}_{29} and C_{16} \overline{H}_{33}). The purity of surfactants was tested by means of surface tension measurements and there were no minima in plots of surface tension of the purified surfactants against -log [surfactant].

IR spectra were recorded on a Perkin-Elmer 1430 spectrophotometer as KBr plates. $H-NMR$ spectra were recorded in a Bruker AM-300 apparatus with TMS as an internal reference in CDCl solutions. Chemical shifts are given in ppm (6). Mass spectra were obtained on a Hewlett-Packard 5971A spectrometer at 70 eV and peak abundances are quoted as percentage of the base peak. Elemental analysis was performed by Galbraith Laboratories. Inc., Knoxville, TN.

Synthesis of 2-chloroquinoxaline (2).- Compound (2) was prepared from 2hydroxyquinoxaline following the proven method reported by Castle and Onda.²² All spectral data are consistent with reported values.²⁹

Synthesis of 2-C4-nitrophenoxy~guinoxaline (3). 2-Chloroquinoxaline (2) was added slowly to a fused mixture of 4 -nitrophenol (8 g, 575 mmol) and KOH (2 g, 356 mmol). The mixture was heated at fusion temperature for one hour and was monitored by TLC (ether-chloroform 6:4) until the reaction was completed. The reaction mixture was washed with **KOH 10%** solution and filtered. The expected product was recrystallized in hot acetone to afford (3) . M.p. 153 C (1,70 g, 56.7 Xl. IR (KBrl 3120, 3080, 1625, 1500, 1350, 1320, 1300, 1200, 1000, 860 and 760 cm⁻; H-NMR 300 MHz (CDC1): δ = 7.50 (d, 2H, H-2', $H-6$ ', $J = 10$ Hz), $7.64-7.80$ (m, $3H$, $H-5$, $H-6$, $H-7$), $8.08-8.14$ (m, $1H$, $H-8$), 8.29 (d, 2H, H-3', H-5', J = 10 Hz), 8.76 (s, intensity) 267 (M+, lH, H-3). MS, m/z (relative 1001, 129 (591, 102 (59), 75 (14). Anal. Found: C, 62.97; H, 3.25; N, 15.46; requires for $C_{14}H_0N_3Q_j$; C, 62.90; H, 3.40; N, 15.72

 $Kinetics. -$ All reactions were run at 25.0 $^{\circ}$ C with a Cary 219 spectrometer. The reaction was followed by observing the appearance of 2-quinoxalone (4) at 362 nm. Some of the reactions were also followed by observing the appearance of nitrophenoxide ion at 405 nm; rate constants obtained by both methods were within \pm 2% (Figure 1). The substrate (6-8 x 10⁻³ M stock solution in acetonitrile), was added to the reaction mixture so that the final amount of acetonitrile in the reaction mixture was 0.1%. The spontaneous water reaction made only a minor contribution and we neglected it in the analysis. All reactions followed first-order kinetics for at least four half-lives. First-order rate constants, k_{ψ} , are in reciprocal seconds and are the averages of at least three separate runs with a maximum deviation of 5%.

ACKNOWLEDGMENT

Support of this work by the Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Grant S1-2163, Venezuela, is gratefully acknowledged.

REFERENCES

- 1. Ca.l Fendler, J.H. *Membrane Mimetic Chemistry;* Wiley-Interecienca: New York, 1982; $\langle b \rangle$ Bunton, C.A.; Nome, F.; Quina, F.H.; Romsted, R.S. Acc. *Chem. Res. iQQI,* 24, 357-371.
- 2. Bunton, C.A. *Cat. Rev. Sci. Eng.* 1979, 20, l-58.
- 3. Bunton, C.A.; Savelli, G. *Adv. Phys. Org. Chem.* 1988, 22, 213-309.
- 4. Romated, L.S. In *Surfactants in Solution;* Mittal, K.L.; Lindman, B. Eda.; Plenum Preea: New York, 1984, Vo1.2, pp. 1015-1088.
- 5. Quina, F.H; Chaimovich, H. *J. Phys. Chem.* 1979, 83, 1844-1850.
- 8. Rodenas, E; Vera, S. *J. Phys. Chem.* lQ85, 89, 513-518.
- 7. Menger, P.M.; Portnoy, C.E. *J. Am. Chem. Sot. 1987, 89, 4898-4703.*
- 8. Sudholter, E.J.R.; Van der Langkruis, G.B.; Engberts, J.B.F.N. *Reel. Trav. Chim. Pays-Bas. Belg. 1980, 99, 73-82.*
- 9. Chaimovich, H.; Aleixo, R. M. V.; Cuccovia, I.M.; Zanette, D.; Quina, F.M. In *Solution Behavior of Svrfactants: Tkoretical and Applied Aspects;* Mittal, K.L. Fendler, E.J.; Plenun Prees: New York, 1982, Vol. 2, pp. 949-973.
- 10. Hall, D.G. *J. Phys. Chem. 1987,* 91, 4287-4297.
- 11. Broxton, T.J.; Sango, D.B. *Aust. J. Chem.* 1983, 38, 711-717.
- 12. Bunton, **C.A.;** Gan, L-H.; Moffatt, J.R; Rometed, L.S Savelli, 0. *J. Phys. Chem. 1981, 85, 4118-4125.*
- 13. Nome, F.; Rubira, A.F.; France, C.; Ionescu, L.G. *1. Phys. Chem.* 1982, 88, 1881-1885.
- 14. Bunton, **C.A.;** Gan, L-E.: Hamed, F.H.; Moffatt, J.R. *J. Phys. Chem. 1983, 87, 338-341.*
- 15. Bunton, C.A.; Moffatt, J.R. *J. Phys. Chem. 1988, 92, 2898-2902.*
- 16. Gunnarsson, G; Johnsson, B.; Wennerström, H. *J. Phys. Chem.* 1980, *84, 3114-3121.*
- 17. Illuminati, 0. *Adv. Heterocycl. Chem. 1984, 3, pp. 317-323.*
- 18. **Katritzky, A.K.** *k/andbook of Heterocyclic Chemistry:* Pergamon Press: Oxford, 1985; pp. 188-177.
- 19. Ccl> Flamini, V; Linda, P.; Savelli, G. *-1. Chem. Sot. Perkin Trans. 2 1975, 421-423; Cb>* Cuenoa, A. unpubliehed resulte.
- 20. Sakata, G.; Makino, K. *Heterocycles* 1988. 27, 2481-2515.
- 21. Cheeeeman, G.W.H; Cookaon, R.F. In *The Chemistry of Heterocyclic Compounds, Condensed Pyrcrzines;* Weieaberger, A.; Taylor, E.C.; Wiley: New York, 1979, Vol. 34.
- 22 Cd Castle, R.N.; Onda, M. *J. Org. Chem.* 1961, 28, 954-958; Cb> Sakata, G.; Makino, K.; Hashiba, I. *Heterocycles* 1984, 22, 2581-2585.
- 23. Al-Lohedan, II.; Bunton, C. **A.:** Rometed, L.S. *J. Phys. Chem. 1981,* 85, 2123-2129.
- 24. Bunton, C.A.; Carraeco, N.; Huang, S. **K.;** Paik, C. H.; Rometed. L.S. *J. Am. Chem. SOC.* 1978, 100, 5420-5425.
- 25. Bunton, C. **A.;** CUenOa, A. *J. Org. Chem.* 1987, 52, 901-907.
- 28. Cugnoa, A. *Int. 1. Chem. Kin.* 1990, 22, 103-111.
- 27. Bunton, C.A. ; CUenCa, A. *Can. J. Chem. 1986, 84,* 1179-1183.
- 28. Bunton, C.A.; Rodenaa, E.; Moffatt, J.R. *J. Am. Chem. Sot. 1982, 104, 2853-2855.*
- 29. *Ccl)* Poradowaka, Ii.; Kaniawaka, A. *Org. Mass.* SpeCtrOm. lQSIt 18, 5-11; Cb> McNab, R. *J. Chem. Sot. Perkin 2. 1982. 357-383.*

(Receivedin USA 21 May 1992; *accepted 16November 1993)*